Showing posts with label postgres. Show all posts
Showing posts with label postgres. Show all posts

27 Oct 2024

What's in an empty table?


How much storage does an empty table in Postgres take?

This is a post about Postgres tables that store ... well basically ... Nothing.


The idea for this post came from this tweet that hinted that an empty table on most databases today takes 16Kb of storage. Now admittedly Franck was probably reminiscing the good-old days so this is probably quite out of context, but it did get me thinking, and thus this post.


NB: Here's a video showing this in action ! - See video .

A "regular" empty table in Production

Here's a regular small table that could be found in Production. It has a Primary Key, a text column and a JSONB column. Let's check the table size using the pg_total_relation_size() postgres function (you can read more about that function here).

db1=# create table t(id bigint primary key, b text, c jsonb);

CREATE TABLE


db1=# select pg_total_relation_size('t');

 pg_total_relation_size

------------------------

                  16384

(1 row)



Hmmm, so that tweet did have a point. Given how low-cost memory has become over the decades, it is easy to understand why databases today chose to optimize speed over memory efficiency (more on this later) and so even an empty table in Postgres, does consume 16 kb. 

But "where" is the 16kb being used?


db1=# select pg_relation_size('t');
 pg_relation_size
------------------
                0
(1 row)

The relation itself isn't consuming any space! That is good (again more on this later) but then where is the space being used then?

db1=# \d t
                 Table "public.t"
 Column |  Type  | Collation | Nullable | Default
--------+--------+-----------+----------+---------
 id     | bigint |           | not null |
 b      | text   |           |          |
 c      | jsonb  |           |          |
Indexes:
    "t_pkey" PRIMARY KEY, btree (id)


We see that the table has a Primary Key - and thus an index - t_pkey

Does the index is consuming 16kb?

db1=# select pg_relation_size('t_pkey');
 pg_relation_size
------------------
             8192
(1 row)

So the index is using some of it - 8kb - so that is progress - but who's using the other 8kb?


Let's start cutting the table down

Let's start cutting down the columns and see if the disk-usage goes down. 

db1=# DROP TABLE t; CREATE TABLE t (id BIGINT PRIMARY KEY, b JSONB); select pg_total_relation_size('t');
DROP TABLE
CREATE TABLE
 pg_total_relation_size
------------------------
                  16384
(1 row)

db1=# DROP TABLE t; CREATE TABLE t (id BIGINT PRIMARY KEY, b TEXT); select pg_total_relation_size('t');
DROP TABLE
CREATE TABLE
 pg_total_relation_size
------------------------
                  16384
(1 row)


Hmmm, that didn't help at all. Dropping either of the TEXT or JSONB column didn't help. Let's look at the expanded version of this table to see if there's any similarity in the two columns. (I've clipped the output to make it easier to read)


db1=# \d+ t
                                            Table "public.t"
 Column |  Type  | Collation | Nullable | Default | Storage  | ...
--------+--------+-----------+----------+---------+----------+-...
 id     | bigint |           | not null |         | plain    | ...
 b      | text   |           |          |         | extended | ...
 c      | jsonb  |           |          |         | extended | ...
Indexes:
    "t_pkey" PRIMARY KEY, btree (id)
Access method: heap


Clearly, the two column's are "extended" (you can read more about it here), but basically what happened here is that an extended column type resulted in the creation of a TOAST table (you can read more about TOAST here). Let's find out "how" to find the TOAST table for the table "t", and check if that could be consuming the remaining 8kb?


db1=# select oid, relname, reltoastrelid, reltoastrelid::regclass from pg_class where relname = 't';
  oid  | relname | reltoastrelid |      reltoastrelid
-------+---------+---------------+-------------------------
 18300 | t       |         18303 | pg_toast.pg_toast_18300
(1 row)

db1=# select pg_relation_size('pg_toast.pg_toast_18300');
 pg_relation_size
------------------
                0
(1 row)

Hmmm, it's not the TOAST table. But just like the main table "t", could it be that the TOAST table has supporting relations that are to blame?


db1=# select pg_total_relation_size('pg_toast.pg_toast_18300');
 pg_total_relation_size
------------------------
                   8192
(1 row)

db1=# \d pg_toast.pg_toast_18300
TOAST table "pg_toast.pg_toast_18300"
   Column   |  Type
------------+---------
 chunk_id   | oid
 chunk_seq  | integer
 chunk_data | bytea
Owning table: "public.t"
Indexes:
    "pg_toast_18300_index" PRIMARY KEY, btree (chunk_id, chunk_seq)

db1=# select pg_relation_size('pg_toast.pg_toast_18300_index');
 pg_relation_size
------------------
             8192
(1 row)

Yes! So we see above, that the TOAST table implicitly has a primary key (of it's own) that uses an index - which has 1 page (8kb) assigned to it.

In a nutshell, the empty table 't' above, consumes 16kb and the storage allocation takes this shape:

  • Main relation - 0 bytes - 't'
  • Main relation  Index - 8kb - 't_pkey'
  • Toast relation - 0 bytes - 'pg_toast_18300'
  • Toast relation Index - 8kb - 'pg_toast_18300_index'

Cut Cut Cut

Okay, lets see if we can reduce the table size further, by dropping both the Extended columns.


db1=# DROP TABLE t; CREATE TABLE t (id BIGINT PRIMARY KEY); select pg_total_relation_size('t');
DROP TABLE
CREATE TABLE
 pg_total_relation_size
------------------------
                   8192
(1 row)


Okay, that makes sense. Now the main table (heap) is still not consuming anything, but the index still does. 

Let's reduce further.

db1=# DROP TABLE t; CREATE TABLE t (id BIGINT); select pg_total_relation_size('t');
DROP TABLE
CREATE TABLE
 pg_total_relation_size
------------------------

                      0
(1 row)





0 bytes!! 


Nice! But seriously - 0 bytes?

It kind of makes sense, that since Postgres doesn't yet have anything to store - besides the metadata of the table (and since the metadata is stored in the system catalogs - for e.g. pg_catalog schema) - there isn't anything to store in the main relation (heap) as yet. 

Disk Usage - Check filesystem

Hmmm - Nah, what if I don't trust Postgres?

Let's skip Postgres functions and ask the filesystem directly - and see if the table is actually 0 bytes. Here we first find the file path of the table in question using the postgres function pg_relation_filepath() and then ask the file-system for the file-size.


db1=# select pg_relation_filepath('t');
 pg_relation_filepath
----------------------
 base/17727/18356
(1 row)

db1=# \! ls -la /home/robins/proj/localpg/data/base/17727/18356

-rw------- 1 robins robins 0 Sep 23 10:19 /home/robins/proj/localpg/data/base/17727/18356


So the file corresponding to the table, actually is using 0 bytes. Nice!

Now, when a table is created, some entries are added to the system catalog. Let see if the database size is signficantly more than a blank database?


postgres=# create database db1;
CREATE DATABASE

postgres=# \c db1
You are now connected to database "db1" as user "robins".

db1=# CREATE TABLE t (id BIGINT);
CREATE TABLE

db1=# select pg_database_size('db1');
 pg_database_size
------------------
          7482515
(1 row)

db1=# create database db2;
CREATE DATABASE

db1=# \c db2
You are now connected to database "db2" as user "robins".

db2=# select pg_database_size('db2');
 pg_database_size
------------------
          7482515
(1 row)


Good. So this somewhat confirms that a blank database and a database with an "empty" table use the same disk-space. 

Postgres is hiding something

Technically though, I'm lying. Well actually Postgres is lying hiding something from the file-system (i.e. every new table does make the database grow logically - a tad little - just that most of the times, the filesystem doesn't get the memo).

Under the cover, the way postgres stores data in a table (catalog table, or any user table), although it consumes a page of disk-space (often 8Kb), logically it may be consuming only a small part of that page. This is very helpful when more rows need to be stored in the table. When more rows come in, Postgres is able to reuse the same (first) page to now logically store more data - although for the filesystem - no extra pages were requested. This is what I was hinting at earlier that today's database use disk space (and thus memory cache) with larger (8kb) chunks and continue to keep using that page (until a new page is needed). Further below, I show a brief example of how all of this works.

But to summarize, it is then unfair to say that the system catalog did not grow at all (when a new table was added) - since some catalogs are guaranteed to have grown (for e.g. metadata of the new table is stored as an extra row in pg_class etc.) within the disk blocks already allocated as in-use for that catalog.

Let's squeeze a little more? 


db1=# create table a();

CREATE TABLE


Right off the bat, that might seem completely wrong. Does Postgres allow a table with no Columns?

Yes !! 😎

All databases allow creation of an empty table (obviously), but Postgres allows a new table even if there are no columns! Let's verify this from the Postgres Documentation. Although suttle, we can see that in the syntax section of the CREATE TABLE page, the column_name data_type is enclosed with a square braces [] - which implies that columns are in fact, optional. What's more, this "feature" is a part of Postgres at least for the past 20 years!

Now the utility of this table is arguable (we'll explore that below), but it is now clear that this syntax is legal and works just fine. 

Let's see how such a table looks like with psql \d 

db1=# \d a
                Table "public.a"
 Column | Type | Collation | Nullable | Default
--------+------+-----------+----------+---------


That's it! That's the complete output - Since the table has no columns, the output above (rightly) doesn't show anything.


Let's go a little deeper

The obvious next question is - What on earth could a table like this be used for? That is a perfectly good question, and the answer is probably not much. However if you instead ask whether "Squeeze a little more" mean that a no column table takes less storage space? The answer (depends on input data but) is most probably yes. Let's see how does it help Postgres if it knows that you don't want to store any column in the table.


db1=# create table a();
CREATE TABLE
db1=# \dt+ a
                                  List of relations
 Schema | Name | Type  | Owner  | Persistence | Access method |  Size   | Description
--------+------+-------+--------+-------------+---------------+---------+-------------
 public | a    | table | robins | permanent   | heap          | 0 bytes |
(1 row)

db1=# insert into a select;
INSERT 0 1

db1=# \dt+ a
                                    List of relations
 Schema | Name | Type  | Owner  | Persistence | Access method |    Size    | Description
--------+------+-------+--------+-------------+---------------+------------+-------------
 public | a    | table | robins | permanent   | heap          | 8192 bytes |
(1 row)


Nothing new here. We see that although an empty (0 column) table consumes 0 byte for storage. And like a regular table, as soon as the first row is inserted, the table uses 1 page - which in my test database (and probably 99.99% of postgres databases world-wide) consumes 8192 bytes. This is expected, but do note that the storage of logical rows in a postgres page, is a little oddly done (and for good reason). There is lllllooooottttt of detail here - but I wouldn't blame you if you'd want to keep that aside for a cold winter morning - when armed with a cup of hot coffee.

For now, we see below that each row that is inserted into the table, consumes 24 bytes - in that 8kb page.

db1=# create extension pageinspect ;
CREATE EXTENSION

db1=# truncate table a;
TRUNCATE TABLE

db1=# insert into a select FROM generate_series(1,3);
INSERT 0 3

db1=# SELECT * FROM heap_page_items(get_raw_page('a', 0));
 lp | lp_off | lp_flags | lp_len | t_xmin | t_xmax | t_field3 | t_ctid | t_infomask2 | t_infomask | t_hoff | t_bits
| t_oid | t_data
----+--------+----------+--------+--------+--------+----------+--------+-------------+------------+--------+--------
+-------+--------
  1 |   8168 |        1 |     24 |  85105 |      0 |        0 | (0,1)  |           0 |       2048 |     24 |
|       | \x
  2 |   8144 |        1 |     24 |  85105 |      0 |        0 | (0,2)  |           0 |       2048 |     24 |
|       | \x
  3 |   8120 |        1 |     24 |  85105 |      0 |        0 | (0,3)  |           0 |       2048 |     24 |
|       | \x
(3 rows)



Still going Deeper - but on a Tangent

So does the above imply that adding more columns to a table would mean Postgres consumes more bytres-per-row? Let's verify:

db1=# drop table t;
DROP TABLE

db1=# create table t(id bigint);
CREATE TABLE

db1=# truncate table t; insert into t select generate_series(1,3); vacuum full t; \dt+ t
TRUNCATE TABLE
INSERT 0 3
VACUUM
                                    List of relations
 Schema | Name | Type  | Owner  | Persistence | Access method |    Size    | Description
--------+------+-------+--------+-------------+---------------+------------+-------------
 public | t    | table | robins | permanent   | heap          | 8192 bytes |
(1 row)

db1=# SELECT * FROM heap_page_items(get_raw_page('t', 0));
 lp | lp_off | lp_flags | lp_len | t_xmin | t_xmax | t_field3 | t_ctid | t_infomask2 | t_infomask | t_hoff | t_bits
| t_oid |       t_data
----+--------+----------+--------+--------+--------+----------+--------+-------------+------------+--------+--------
+-------+--------------------
  1 |   8160 |        1 |     32 |  85100 |      0 |        0 | (0,1)  |           1 |       2816 |     24 |
|       | \x0100000000000000
  2 |   8128 |        1 |     32 |  85100 |      0 |        0 | (0,2)  |           1 |       2816 |     24 |
|       | \x0200000000000000
  3 |   8096 |        1 |     32 |  85100 |      0 |        0 | (0,3)  |           1 |       2816 |     24 |
|       | \x0300000000000000
(3 rows)


Here we see that each row is now consuming 32 bytes - which is an extra 8 bytes from earlier. Good chances the only column we've added is the reason for the extra 8 bytes. Let's verify that using the pg_column_size() function (you can read more about it here):


db1=# select pg_column_size(1::bigint);
 pg_column_size
----------------
              8
(1 row)


But wait, there's one more twist here:

db1=# INSERT INTO t SELECT;
INSERT 0 1

db1=# SELECT * FROM heap_page_items(get_raw_page('t', 0));
 lp | lp_off | lp_flags | lp_len | t_xmin | t_xmax | t_field3 | t_ctid | t_infomask2 | t_infomask | t_hoff |  t_bits
  | t_oid |       t_data
----+--------+----------+--------+--------+--------+----------+--------+-------------+------------+--------+--------
--+-------+--------------------
  1 |   8160 |        1 |     32 |  85111 |      0 |        0 | (0,1)  |           1 |       2816 |     24 |
  |       | \x0100000000000000
  2 |   8128 |        1 |     32 |  85111 |      0 |        0 | (0,2)  |           1 |       2816 |     24 |
  |       | \x0200000000000000
  3 |   8096 |        1 |     32 |  85111 |      0 |        0 | (0,3)  |           1 |       2816 |     24 |
  |       | \x0300000000000000
  4 |   8072 |        1 |     24 |  85113 |      0 |        0 | (0,4)  |           1 |       2049 |     24 | 0000000
0 |       | \x
(4 rows)

So wait, see row 4. Although the table has a column, just because the column didn't have a value, the row actually consumed only 24 bytes (the minimum)?

Is this scalable? I mean can I have a 5 column table and still Postgres stores a row, but only consume the bare minimum 24 bytes? Let's see:


db1=# drop table h;
DROP TABLE

db1=# create table h(c1 bigint, c2 bigint, c3 bigint, c4 bigint, c5 bigint);
CREATE TABLE

db1=# insert into h select;
INSERT 0 1

db1=# SELECT * FROM heap_page_items(get_raw_page('h', 0));
 lp | lp_off | lp_flags | lp_len | t_xmin | t_xmax | t_field3 | t_ctid | t_infomask2 | t_infomask | t_hoff |  t_bits
  | t_oid | t_data
----+--------+----------+--------+--------+--------+----------+--------+-------------+------------+--------+--------
--+-------+--------
  1 |   8168 |        1 |     24 |  86262 |      0 |        0 | (0,1)  |           5 |       2049 |     24 | 0000000
0 |       | \x
(1 row)


So yes, that does work and it does scale for "many" columns - but with a minor variation. There's more detail in code, but basically for regular columns the header contains 1 bit per column which expands in 8 byte chunks - and so say for 100 column table (with no data) - Postgres consumes ~40 bytes per row. 


db1=# drop table h; create table h(); select 'alter table h add column c' || n || ' bigint;' from generate_series(1,100) e(n); \gexec
.
.
ALTER TABLE
ALTER TABLE
ALTER TABLE
ALTER TABLE

db1=# select count(*) from pg_attribute where attrelid = 'h'::regclass;
 count
-------
   106
(1 row)

db1=# insert into h select; vacuum full h; SELECT * FROM heap_page_items(get_raw_page('h', 0));
INSERT 0 1
VACUUM
 lp | lp_off | lp_flags | lp_len | t_xmin | t_xmax | t_field3 | t_ctid | t_infomask2 | t_infomask | t_hoff |
                                          t_bits                                                  | t_oid | t_data
----+--------+----------+--------+--------+--------+----------+--------+-------------+------------+--------+--------
--------------------------------------------------------------------------------------------------+-------+--------
  1 |   8152 |        1 |     40 |  88376 |      0 |        0 | (0,1)  |         100 |       2817 |     40 | 0000000
0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000 |       | \x
(1 row)

Given the task at hand, I'd say that's still decently crisp.

So does a zero column table, squeeze max rows per page?


Yes, and No. So going back to a 0 column table - let's try to fill the whole page with rows and see how many can be stuffed on a single page. 

If you're running low on coffee - the page-header is 24 bytes and so back-of-the-envelope math suggests that number of rows possible to squeeze into a page should be - ( 8192 bytes in a page - some bytes for page header & footer ) / 24 bytes per row = ~340 rows.


db1=# truncate table a; insert into a select FROM generate_series(1,340); vacuum full a; \dt+ a
TRUNCATE TABLE
INSERT 0 340
VACUUM
                                 List of relations
 Schema | Name | Type  | Owner  | Persistence | Access method | Size  | Description
--------+------+-------+--------+-------------+---------------+-------+-------------
 public | a    | table | robins | permanent   | heap          | 16 kB |
(1 row)

Something's not right! That size should have stayed 8Kb. Why did Postgres use 16Kb (two pages - instead of one)?

That's because of this tiny bit of trivia that the maximum number of tuples that Postgres can squeeze onto a page, is hard-coded to 291 (for an 8kb page) - which was interesting to know - but to clarify, Heap-Only-Tuples (HOT feature) can effectively force a few more rows on a running database, but we'll go deeper into that some other day.

So let's go back and confirm if that understanding is correct - that Postgres can in fact squeeze at max only 291 rows onto the same page. 


db1=# truncate table a; insert into a select FROM generate_series(1,291); vacuum full a; \dt+ a
TRUNCATE TABLE
INSERT 0 291
VACUUM
                                    List of relations
 Schema | Name | Type  | Owner  | Persistence | Access method |    Size    | Description
--------+------+-------+--------+-------------+---------------+------------+-------------
 public | a    | table | robins | permanent   | heap          | 8192 bytes |
(1 row)


db1=# truncate table a; insert into a select FROM generate_series(1,292); vacuum full a; \dt+ a
TRUNCATE TABLE
INSERT 0 292
VACUUM
                                 List of relations
 Schema | Name | Type  | Owner  | Persistence | Access method | Size  | Description
--------+------+-------+--------+-------------+---------------+-------+-------------
 public | a    | table | robins | permanent   | heap          | 16 kB |
(1 row)

Here we see that:
  • When 291 rows are inserted (blue), the table stays at 1 page (8kb)
  • Whereas when 292 (291+1) rows are inserted (green), the table expands to 2 pages (16 kb)

Utility

So, that's all fine, but what's this table good for?

Well beyond understanding Postgres :) not much. This table is unhelpful for most database tasks. It can't store values - it wouldn't allow columns / indexes / selective deletes (let's avoid ctid hacks for now) etc. 

But if I was forced to conjure an idea, a high-contention ticker app (that only needs to store +1s) via postgres functions - may be (and that's a BIG may be) this table could be used to store +1s - with a back-off algorithm on the application side. Good chances if there's a good DBA - this is done much better in many other ways (simplest of which is at the application end, or as a value in a column etc.) but it'd be better than nothing.

There are few other possible use-cases discussed here - for e.g. if (for some reason) you'd want to add columns to a table in a programmatic fashion after a base table is created - like we did above in the 100 column table test, OR, if you want to reserve a table name (in a multi-user setup) months / years in advance etc.

Finally

Much Ado About Nothing... This was a good exercise where we learnt something new about how Postgres stores table data - when ironically - there's nothing to store :) 

Hope you had fun! Comments more than welcome.

16 Jun 2024

Compiling latest gcc to test more architectures

Off late, I've had two separate needs to compile GCC by hand and although my first foray into compiling gcc from git took patience, stumbling over the basics was interesting to say the least.

The first time I realised that an old GCC version could matter, was this feedback [1] that one of my buildfarm members was running an old (for its arch) gcc version, something that I almost never paid much attention to. The other being that that led me to newer architectures (more on that below) and how this could repeat itself if / when I end up playing with more architectures.

So finally, I can say I have a framework that frequently checks / recompiles gcc and ensures all my local tests are using the latest and the greatest gcc :) . (I am happy with how this has taken shape on my home server, and once I am able to port it to my other machines, don't see why this shouldn't land on github).

Now admittedly, compiling gcc on a nightly basis was already an overkill, but then what the heck - I went and did this hourly basis just because well-why-not. My personal ask was to:

  1. Incrementally learn how compiling gcc unfolds
  2. Have some fun scripting while at it
  3. ... but most importantly, see whether I could utilize this experience in other experiments where the idea is to forewarn database developers about upcoming changes.

A little more on point 3 above, I oversee a few machines on the postgres buildfarm and they differ in some aspects:

  1. Different archictures:
    1. aarch64: Gravitons
    2. x86-64: A vanilla off-the-shelf dell workstation
    3. armv7l - Raspberry Pi4
  2. Different GCCs:
    1. 8.3.0 (default in pi4)
    2. 7.3.1 (default on most ALs)
    3. 13.2 (default on Ubuntu)
    4. 14.0.1 (naive attempt at compiling whatever cleared make check)
    5. gcc (experimental nightly)
  3. (Internally I also run some different fuzzing workloads but that's besides the point)
  4. (Future plans - add some form of randomizer to test odd combinations of compilation flags, but more on that in an upcoming post)


Now if all goes to plan, I should also add to the mix, 2 new architectures. They wouldn't be the snappiest processors in the market (at least not in the pricing-level I am after), but hey it should be fun to play with!

  1. loongarch64 - (cough) Recent (but sure as butterflies, a promising) entrant - the MIPS64 Loongson has been around for some time now, but my interest has grown off late owing to sporadic reports that its becoming somewhat competitive, which should be interesting to review.
  2. riscv64 - Another interesting arch that should be fun to try out. Again, am not holding my breath that it'd top any charts, but could still end up being interesting nonetheless.

On the GCC front, getting the setup ready and stable, clears the path to now focus upgrading my buildfarm animals one-by-one and basically start focussing beyond this hurdle.

gcseb02 20240615_1700 - git checkout successful.
gcseb02 20240615_1700 - git pull successful.
gcseb02 20240615_1700 - No change in gcc version. Quitting.

gcsa36f 20240615_1800 - git checkout successful.
gcsa36f 20240615_1800 - git pull successful.
gcsa36f 20240615_1800 - gcc has changed - [471fb092601] vs [57af69d56e7]. Recompiling.
gcsa36f 20240615_1800 - make successful
gcsa36f 20240615_1800 - make install successful.
gcsa36f 20240615_1800 - gcc version string has changed from [15.0.0 20240615 (experimental) - 471fb092601] to [15.0.0 20240615 (experimental) - 57af69d56e7]

gcsf66a 20240615_1900 - git checkout successful.
gcsf66a 20240615_1900 - Unable to git pull. Are we connected? Quitting.
gcsf66a 20240615_1900 - git switched back to 57af69d56e7.

gcs629f 20240615_2000 - git checkout successful.
gcs629f 20240615_2000 - git pull successful.
gcs629f 20240615_2000 - gcc has changed - [57af69d56e7] vs [6762d5738b0]. Recompiling.
gcs629f 20240615_2000 - make successful
gcs629f 20240615_2000 - make install successful.
gcs629f 20240615_2000 - gcc version string has changed from [15.0.0 20240615 (experimental) - 57af69d56e7] to [15.0.0 20240615 (experimental) - 6762d5738b0]

.
.

gcsc115 20240616_0400 - git checkout successful.
gcsc115 20240616_0400 - git pull successful.
gcsc115 20240616_0400 - No change in gcc version. Quitting.

Reference

2. Compilation script source - https://github.com/robins/gcc_compile

28 Apr 2024

Boost Database Security: Restrict Users to Read Replicas

Only Allow Login to Read-Replicas and Standbys

When you're working with large databases in production, it is incredibly common to use read-replicas to improve performance. These read-replicas are a copy of your primary (main) database and let your applications offload read-heavy queries, which in-turn reduces strain on your primary database, effectively making the application faster and snappier.

Sometimes, you may want to restrict specific database users so they can connect ONLY to these read-replicas, and not to the primary database server. This can be tricky to implement, since any permissions configured for this use-case, whether on the user-level, the database level, the schema-level or even the table level would be quickly replicated to the read-replicas and thus would not work as expected.

This guide will show how to configure a database user to only login successfully on a read-replica. The only requirement is to enable the pg_tle extension [3] on your PostgreSQL database. This is simple to do on your Ubuntu based Laptop (see how to do that here [2]) or virtual-machines offered by your favourite cloud-provider. Furthermore, you could apply your login rules using Pl/PgSQL, PL/v8 or even PL/Rust - See here[1].

Why Restrict Access?

There are many good reasons for restricting users to read-replicas:

  • Performance: You can dedicate your primary database server to handling write operations (like updating data), ensuring those operations happen as fast as possible.

  • Reporting / Analytics: Production environments often have dedicated users for ancillary tasks, such as monitoring, reporting dashboards, read-only tenants etc. Restricting these database users to read-replica helpsreducing extra load on the primary database.

  • Security: In some cases, granting direct access to the primary database might be considered a security risk. Further, you may not be able to force login hygeine for all your database users, and then having a lockdown system to reject those database users to login to primary is crucial for application rollout.

Prerequisites

  • An existing PostgreSQL database instance with at least one read-replica.
    • You could also try this on your own Postgres database with pg_tle extension. Read here [2] for more on how to install pg_tle on your Ubuntu system.
  • Basic understanding of users and permissions within a database.

Steps

  1. Identify Target Database and Users: First we need to define how to implement the restriction. i.e. Which users (and database) are to be restricted to login only to read-replica. In the example below, we would restrict the user standby_only_user to only be able to login to Standbys / Read-Replicas on database prod_db.
psql <<SQL
  \c prod_db
  CREATE EXTENSION pg_tle;
SQL 
  1. Ensure that shared_preload_libraries is properly set to allow pg_tle. Also make sure that the pgtle.clientauth_db_name is appropriately set to the desired database (here prod_db):
cat <<EOL >> data/postgresql.conf
  shared_preload_libraries='pg_tle'
  pgtle.enable_clientauth=require
  pgtle.clientauth_db_name=prod_db
  pgtle.clientauth_users_to_skip=robins
  pgtle.clientauth_databases_to_skip=''
EOL
  1. Secret Sauce:

Next we create the key pg_tle function that restricts the user standby_only_user to login successfully only if this is a standby / read-replica:

SELECT pgtle.install_extension (
  'standbyusercheck',
  '1.0',
  'Allow some users to login only to standby / read-replicas',
$_pgtle_$
  CREATE SCHEMA standbycheck_schema;

  REVOKE ALL ON SCHEMA standbycheck_schema FROM PUBLIC;
  GRANT USAGE ON SCHEMA standbycheck_schema TO PUBLIC;

  CREATE OR REPLACE FUNCTION standbycheck_schema.standbycheck_hook(port pgtle.clientauth_port_subset, status integer)
  RETURNS void AS $$
    DECLARE
      is_standby bool := TRUE;
    BEGIN
      IF port.user_name = 'standby_only_user' THEN
        SELECT pg_is_in_recovery()
          INTO is_standby;
        IF is_standby THEN
          RAISE NOTICE 'User allowed to login';
        ELSE
          RAISE EXCEPTION 'User can only login to Standby / Read-Replicas';
        END IF;
      END IF;
    END
  $$ LANGUAGE plpgsql SECURITY DEFINER;

  GRANT EXECUTE ON FUNCTION standbycheck_schema.standbycheck_hook TO PUBLIC;
  SELECT pgtle.register_feature('standbycheck_schema.standbycheck_hook', 'clientauth');
  REVOKE ALL ON SCHEMA standbycheck_schema FROM PUBLIC;
$_pgtle_$
);

And now that the function is defined,CREATE EXTENSION would install the function and bind it to future login attempts.

CREATE EXTENSION standbyusercheck;
SHOW pgtle.clientauth_db_name;
  1. Test Connection:
  • Attempting to connect as a privileged user (here robins) to either of primary or read-replica should succeed.
Logging into Replica as robins
 login  | current_database | pg_is_in_recovery
--------+------------------+-------------------
 robins | prod_db          | t
(1 row)

Logging into Primary as robins
 login  | current_database | pg_is_in_recovery
--------+------------------+-------------------
 robins | prod_db          | f
(1 row)
  • However, the user standby_only_user should NOT be able to login to the primary.
Logging into Primary as standby_only_user
psql: error: connection to server at "localhost" (127.0.0.1), port 6432 failed: FATAL:  User can only login to Standby / Read-Replicas
  • While the user (standby_only_user) should only be able to login to any read-replica.
Logging into Replica as standby_only_user
       login       | current_database | pg_is_in_recovery
-------------------+------------------+-------------------
 standby_only_user | prod_db          | t
(1 row)

Other important aspects of this feature

  • You could force clientauth for all logins by setting the parameter pgtle.enable_clientauth = require

  • You could configure some users to always be allowed to login to either of Primary / Read-replica in cases of emergency, by adding that user to the pgtle.clientauth_users_to_skip. Ideally you would want your admin database roles to this list.

  • Orthogonally, you could configure some databases to always allow users to skip clientauth by setting the pgtle.clientauth_databases_to_skip feature.

  • Note, that both clientauth_databases_to_skip and clientauth_databases_to_skip can be utilised together. This is a good way to ensure that some set of database users (and some databases) are exempt from such a login restriction.

  • If pgtle.enable_clientauth is set to on or require and if the database mentioned in pgtle.clientauth_db_name is not configured correctly, postgres would complain with the messsage FATAL: pgtle.enable_clientauth is set to require, but pg_tle is not installed or there are no functions registered with the clientauth feature. This is a good engine check, helping us avoid basic misconfigurations.

  • If you're anticipating connection storms, you can also increase the workers (that would help enforce the login restriction) by setting the pgtle.clientauth_num_parallel_workers parameter to greater than 1.

Conclusion

By following the above steps, you've now successfully configured your PostgreSQL environment to restrict certain users to only login to the read-replicas. This helps not just optimize your database performance, but also bolster security.

Let me know if you'd like to explore more advanced scenarios or discuss IAM integration for fine-grained access control!

Reference

  1. Clientauth Hook Documentation - https://github.com/aws/pg_tle/blob/main/docs/04_hooks.md'
  2. Install pg_tle On Ubuntu - https://www.thatguyfromdelhi.com/2024/04/installing-pgtle-on-ubuntu-quick-guide.html
  3. Unlock PostgreSQL Super Powers with pg_tle - https://www.thatguyfromdelhi.com/2024/04/unlock-postgresql-superpowers-with-pgtle.html

What's in an empty table?

How much storage does an empty table in Postgres take? This is a post about Postgres tables that store ... well basically ...  Nothing . The...